PRESBYOPIA

DEFINITION

- Greek presbys elderly; opos eye
- Presbyopia is the irreversible loss of the accommodative ability of the eye that occurs due to aging
- It is a normal physiological state due to the loss of the accomodative capacity with the passage of time.

PATHOPHYSIOLOGY

Lenticular and extralenticular theories

Lenticular

- →sclerosis of the nuclear lens tissue,
- →decreased distance between ciliary muscle and lens equator
- →lens capsule with age becomes thicker,less extensible and brittle

NORMAL VISION VS. HYPEROPIA & PRESBYOPIA

NORMAL VISION

With normal or 20/20 vision, light focuses directly on the retina's focal point.

HYPEROPIA

Hyperopia is usually present at birth and occurs due to the shape of the eye, either a flat cornea or a short eyeball.

PRESBYOPIA

As you age, the eye's lens loses its ability to focus on nearby objects, causing them to appear blurry.

Extralenticular

- →age related hyalinization of ciliary processes and ciliary muscles
- →loss of elasticity in the zonules
- →even decreasing resistance of the vitreous humor against the accommodating lens capsule

In emmteropic eye far point is infinity and near point varies with age

7 cm at 10yrs age 25-40,33-45

At 10 yrs amplitude of accomodation

$$A=100/7=14D$$

- Since we keep the book at 25 cm can read comfortably till 40 yrs
- After 40 yrs the NPA decrease beyond normal working range leading to presbyopia

Some of the theroies include

- 1.Helmholtz theory
- 2.Coleman theory
- 3. Schachar theory

Helmholtz theory

ciliary muscle contraction ceases

posterior zonular fibres pull the ciliary muscle backward

increases tension on the zonular fibres

increase in lens diameter, decrease in lens thickness and a flattening of the anterior and posterior lens surface curvatures

decrease in optical power

SCHACHAR'S THEORY

ciliary muscle contracts

equatorial zonular tension is increased

anterior and posterior zonules are simultaneously relaxed

central surfaces of the lens steepen

peripheral surfaces of the lens flatten

- Presbyopia results from growth of equatorial diameter of the lens
- with age, the perilenticular space is reduced and ciliary muscle contraction no longer tense the zonules and expand coronally
- Based on this theory introduded new sx for presbyopia scleral expansion bands

CATENARY THEORY

- Proposed by coleman
- Says that lens zonules and anterior vitreous comprises of a diaphram b/w AC and vitreous

ciliary muscle contracts

initiates a pressure gradient between the vitreous and aqueous compartments

anterior capsule and the zonule form a trampoline shape or hammock shaped surface

steep radius of curvature in the center of the lens with slight flattening of the peripheral anterior lens

ACCORDIND TO THIS THEORY

presbyopia occurs d/t increase lens volume with age that results in a reduced response of anterior radius of curvature to the vitreous pressure gradient created by ciliary body contarction

CAUSES FOR PREMATURE PRESBYOPIA

- Uncorrected hypermetropia
- Premature sclerosis of crystalline lens
- Presenile weakness of ciliary muscle
- Chronic simple glaucoma

SYMPTO MS

"My arms are not long enough to see up close anymore"

SYMPTOMS AND SIGNS

- Difficulty in near vision initially in evening and dim light and latter even in good light
- Asthenopic symptoms like headache d/t fatigue of ciliary muscles
- Intermittent diplopia due to associated disturbances of convergence

All symptoms aggravated by fatigue illness fever or other chronic conditions

SIGNS→ reduced amplitude of accomodation

Headaches

Redness and Watering of eyes

Eye strain

Neck and back aches

THE VISION WITH PRESBYOPIA

Distance

Intermediate

Near

TREATMENT

OPTICAL CORRECTION OF PRESBYOPIA

Trial method Age method

Basic principles

- Find ref error for distance n correct it first
- Find presbyopic correction needed in each eye seperately and add it to distance correction
- Presbyopic add should leave atleast 50% acomodation in reserve
- Near point should be taken consideration according to profession of patient
- Do not give over correction
- Additional correction for intermediate distance may be required

Trial method

Trial method

- Patient with Rx in DV, test to 40 cm (or habitual distance of NV)
 well lit
- Mono and/or binocularly
 - Cover LE and go on adding +0.25D in the RE until the patient sees clearly
 - The same for LE
 - Refine the result adding \pm 0.25D binocularly

Age method

- Empirical method based on clinical experience
- Patient with Rx for DV
- Reading test at a habitual distance in NV with convex lens of appropriate power
- There are approximated addition tables depending on age
- Refine the result adding ± 0.25D binocularly

- The difference b/w distance correction and the strength needed for near vision is called ADD
- BUT the add should be given considering the working distance of patient

Age	Predicted near add
40	0
45	+1.00
48	+1.25
50	+1.50
52	+1.75
55	+2.00
60	+2.25
63	+2.50

- Comfortable vision at near uses less than or equal to half of the available amplitude of accommodation
- Near work becomes difficult when the amplitude of accommodation is less than 5.00D

Example

- Working distance at 40 cm requires 2.50D of accommodation
 - Patient A has 5.00D of accommodation
 - He can use up to 2.50D of accommodation comfortably
 - Therefore, he has just enough accommodative power for reading at 40 cm, and no reading glasses are required
 - Patient B has 3.00D of accommodation
 - He can use up to 1.50D of accommodation comfortably
 - Therefore, he needs an additional 1.00D of accommodative power for reading at 40 cm, and +1.00D reading glasses are required

Monofocal lenses

- Useful for static, long-term tasks
- The glasses should be taken off to see from distances
- Bifocal lenses
 - For NV and DV
- Progressive lenses
 - For DV, NV and intermediate distances
 - There are peripheral areas with optical aberrations
 - Very precise adaptation

CONTACT LENS

Contact Lens Correction for Presbyopia

Rigid Gas Permeable Lenses

- Smaller and harder
- Give more oxygen
- Less dry eye problems
- Good for high degrees
- Less deposits buildup
- Easy to handle
- Conventional lenses
- Must wash the lenses well
- · Easily scratched
- Initial discomfort
- Not suitable for contact sports

Soft Contact Lenses

- Larger and softer
- Comfortable to wear
- Shorter adaptation period
- Good for occasional wear
- Need delicate handling
- Available in conventional and disposable types
- Daily, bi-weekly, monthly disposables
- Disposables are cleaner and more hygienic

Both are available in bifocal, multifocal and monovision corrections

surgical treatment

- Surgery
 - Laser in-situ keratomileusis (LASIK)
 - More for presbyopic hyperopia than presbyopia myopia at the moment
 - Multifocal intraocular lens (IOL)
 - Conductive keratoplasty (monovision)
 - Scleral expansion

